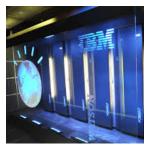
Natural Language Processing

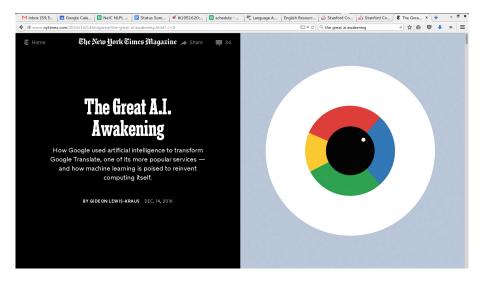
Stephan Oepen University of Oslo oe@ifi.uio.no



What is Natural Language Processing (NLP)?

What is Natural Language Processing (NLP)?

What is Natural Language Processing (NLP)?

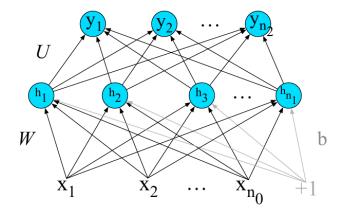


In the Big Picture

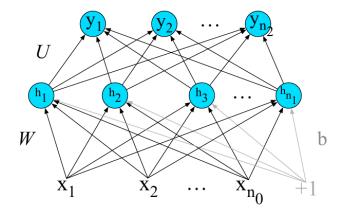
- Sub-discipline of CS: Systems that 'make sense' of human language;
- core part of (Big) Data Science: Language is the fabric of the Web;
- ▶ since 1990s (or so), driven by machine learning: Data and computing.

NLP in the News (Two Years Ago)

(New York Times Magazine, December 2016)



Three Pioneers in Artificial Intelligence Win Turing Award


(The New York Times, March 27, 2019)

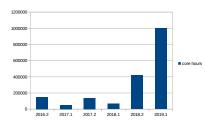
• Artificial neural networks: millions of units \rightarrow large-scale linear algebra.

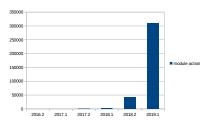
• Artificial neural networks: millions of units \rightarrow large-scale linear algebra.

Where we Come From

Self-help network of NLP developers in Northern Europe; six university research groups (Denmark, Finland, Sweden, Norway); national e-infrastructure providers in Finland and Norway.

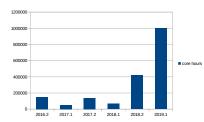
Where we Come From

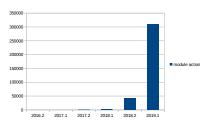

Self-help network of NLP developers in Northern Europe; six university research groups (Denmark, Finland, Sweden, Norway); national e-infrastructure providers in Finland and Norway. Shared allocations on Abel and Taito; discipline-specific software & data; funded by NeIC 2017–19, matching in-kind contributions by all partners.



May 2012 First Letter of Interest Submitted to NeIC: **May 2013** Invited Presentation at First NeIC Conference; May 2014 Second Letter of Interest Submitted to NeIC; **November 2014** NLP in the Nordics Workshop (with Common Crawl); **January 2015** Presentation to NeIC All-Hands Meeting; **January 2015** Discussion with NeIC Providers Forum; **2015–16** Project Directive and Collaboration Agreement; **2017–19** NeIC Project: Three Person Years, 50% Co-Funding; **2019–21** Community Use Case in EOSC-Nordic Project.

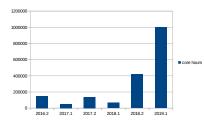
Community Uptake To Date (on Abel)

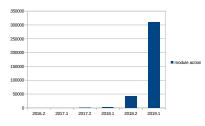



NLPL Core Architecture

- Jointly maintained project directory:
- discipline-specific software and data;
- ► largely parallel across Abel and Taito;
- access for NLPL users and associates;
- ► from 'power users' to MSc students;

Community Uptake To Date (on Abel)




NLPL Core Architecture

- Jointly maintained project directory:
- discipline-specific software and data;
- ► largely parallel across Abel and Taito;
- access for NLPL users and associates;
- ► from 'power users' to MSc students;
- ▶ maybe 3–4 million core hours in 2019.

Community Uptake To Date (on Abel)

NLPL Core Architecture

- Jointly maintained project directory:
- discipline-specific software and data;
- ► largely parallel across Abel and Taito;
- access for NLPL users and associates;
- ▶ from 'power users' to MSc students;
- ▶ maybe 3–4 million core hours in 2019.

Community-Maintained Infrastructure

- 29 tools in 81 module files to date;
- 2 to 8 tbytes of data (Abel, Taito);
- ► large corpora, word embeddings, ...


```
#SBATCH -time=12:00:00
```

```
#SBATCH -nodes=1
```

```
#SBATCH -ntasks-per-node=8
```

```
#SBATCH -mem-per-cpu=4096M
```

```
module use -a /projects/nlpl/software/modulefiles;
module load nlpl-nltk/3.4/3.7 nlpl-gensim/3.7.2/3.7;
module load nlpl-scipy/201901/3.7 nlpl-pytorch/1.1.0/3.7;
```

```
for wd in 50 100 200 300 400; do
  for cd in 5 10 20 40 80; do
    for do in 0 0.1 0.2 0.4; do
       echo python3 tagger.py -wd $wd -cd $cd -do $do;
       done;
       done;
       done
} | xargs -d \n -n 1 -P 8 -t sh -c;
```



```
#SBATCH -time=12:00:00
```

```
#SBATCH -nodes=1
```

```
#SBATCH -ntasks-per-node=8
```

```
#SBATCH -mem-per-cpu=4096M
```

```
module use -a /projects/nlpl/software/modulefiles;
module load nlpl-nltk/3.4/3.7 nlpl-gensim/3.7.2/3.7;
module load nlpl-scipy/201901/3.7 nlpl-pytorch/1.1.0/3.7;
```

```
for wd in 50 100 200 300 400; do
  for cd in 5 10 20 40 80; do
    for do in 0 0.1 0.2 0.4; do
       echo python3 tagger.py -wd $wd -cd $cd -do $do;
       done;
       done;
       done
} | xargs -d \n -n 1 -P 8 -t sh -c;
```



```
#SBATCH -time=12:00:00
```

```
#SBATCH -nodes=1
```

```
#SBATCH -ntasks-per-node=8
```

```
#SBATCH -mem-per-cpu=4096M
```

```
module use -a /projects/nlpl/software/modulefiles;
module load nlpl-nltk/3.4/3.7 nlpl-gensim/3.7.2/3.7;
module load nlpl-scipy/201901/3.7 nlpl-pytorch/1.1.0/3.7;
```

```
for wd in 50 100 200 300 400; do
  for cd in 5 10 20 40 80; do
    for do in 0 0.1 0.2 0.4; do
       echo python3 tagger.py -wd $wd -cd $cd -do $do;
       done;
       done;
       done
} | xargs -d \n -n 1 -P 8 -t sh -c;
```



```
#SBATCH -time=12:00:00
```

```
#SBATCH -nodes=1
```

```
#SBATCH -ntasks-per-node=8
```

```
#SBATCH -mem-per-cpu=4096M
```

```
module use -a /projects/nlpl/software/modulefiles;
module load nlpl-nltk/3.4/3.7 nlpl-gensim/3.7.2/3.7;
module load nlpl-scipy/201901/3.7 nlpl-pytorch/1.1.0/3.7;
```

```
for wd in 50 100 200 300 400; do
  for cd in 5 10 20 40 80; do
    for do in 0 0.1 0.2 0.4; do
       echo python3 tagger.py -wd $wd -cd $cd -do $do;
       done;
       done;
       done
} | xargs -d \n -n 1 -P 8 -t sh -c;
```



```
#SBATCH -time=12:00:00
```

```
#SBATCH -nodes=1
```

```
#SBATCH -ntasks-per-node=8
```

```
#SBATCH -mem-per-cpu=4096M
```

```
module use -a /projects/nlpl/software/modulefiles;
module load nlpl-nltk/3.4/3.7 nlpl-gensim/3.7.2/3.7;
module load nlpl-scipy/201901/3.7 nlpl-pytorch/1.1.0/3.7;
```

```
{
```

```
for wd in 50 100 200 300 400; do
    for cd in 5 10 20 40 80; do
        for do in 0 0.1 0.2 0.4; do
            echo python3 tagger.py -wd $wd -cd $cd -do $do;
            done;
            done;
            done
} | xargs -d \n -n 1 -P 8 -t sh -c;
```



```
#SBATCH -time=12:00:00
```

```
#SBATCH -nodes=1
```

```
#SBATCH -ntasks-per-node=8
```

```
#SBATCH -mem-per-cpu=4096M
```

```
module use -a /projects/nlpl/software/modulefiles;
module load nlpl-nltk/3.4/3.7 nlpl-gensim/3.7.2/3.7;
module load nlpl-scipy/201901/3.7 nlpl-pytorch/1.1.0/3.7;
```

```
for wd in 50 100 200 300 400; do
  for cd in 5 10 20 40 80; do
    for do in 0 0.1 0.2 0.4; do
       echo python3 tagger.py -wd $wd -cd $cd -do $do;
       done;
       done;
       done
} | xargs -d \n -n 1 -P 8 -t sh -c;
```


/projects/nlpl/operations/python/pytorch.txt

```
#
```

```
#$ module load gcc/4.9.2 cuda/9.0
```

```
#$ module load nlpl-numpy/1.16.3/$dialect
```

```
#$ module load nlpl-scipy/201901/$dialect
```

#

torch

torchvision

- Push modularization: small building blocks; many different versions;
- driven by user needs; never change installed module (reproducability).

/projects/nlpl/operations/python/pytorch.txt

```
#
```

```
#$ module load gcc/4.9.2 cuda/9.0
#$ module load nlpl-numpy/1.16.3/$dialect
#$ module load nlpl-scipy/201901/$dialect
#
torch
torch
torchvision
```

- Push modularization: small building blocks; many different versions;
- driven by user needs; never change installed module (reproducability).

/projects/nlpl/operations/python/pytorch.txt

```
#
```

```
#$ module load gcc/4.9.2 cuda/9.0
```

```
#$ module load nlpl-numpy/1.16.3/$dialect
```

#\$ module load nlpl-scipy/201901/\$dialect

#

torch

torchvision

- Push modularization: small building blocks; many different versions;
- driven by user needs; never change installed module (reproducability).

```
for i in python2/2.7.10 python3/3.5.5 python3/3.7.0; do
  module purge; module load $i;
   /projects/nlpl/operation/python/initialize \
    --version 1.1.0 pytorch
```


/projects/nlpl/operations/python/pytorch.txt

```
#
```

```
#$ module load gcc/4.9.2 cuda/9.0
```

```
#$ module load nlpl-numpy/1.16.3/$dialect
```

#\$ module load nlpl-scipy/201901/\$dialect

#

torch

torchvision

- Push modularization: small building blocks; many different versions;
- driven by user needs; never change installed module (reproducability).

```
for i in python2/2.7.10 python3/3.5.5 python3/3.7.0; do
  module purge; module load $i;
   /projects/nlpl/operation/python/initialize \
        --version 1.1.0 pytorch
done
```


#%Module1.0

```
set root "/projects/nlpl/software/"
set name "pytorch"
set version "1.1.0"
set base [string cat $root $name "/" $version]
module load intel/2019.0
module load openssl.intel/1_1_1
module load python3/3.7.0
module load gcc/4.9.2
module load cuda/9.0
module load nlpl-numpy/1.16.0/3.7
module load nlpl-scipy/201901/3.7
```

```
prepend-path PYTHONPATH $base/lib/python3.7/site-packages
prepend-path LD_LIBRARY_PATH $base/lib
prepend-path PATH $base/bin/3.7
```



```
#%Module1.0
```

```
set root "/projects/nlpl/software/"
set name "pytorch"
set version "1.1.0"
set base [string cat $root $name "/" $version]
module load intel/2019.0
module load openssl.intel/1 1 1
module load python3/3.7.0
module load gcc/4.9.2
module load cuda/9.0
module load nlpl-numpy/1.16.0/3.7
module load nlpl-scipy/201901/3.7
```

```
prepend-path PYTHONPATH $base/lib/python3.7/site-packages
prepend-path LD_LIBRARY_PATH $base/lib
prepend-path PATH $base/bin/3.7
```



```
#%Module1.0
```

```
set root "/projects/nlpl/software/"
set name "pytorch"
set version "1.1.0"
set base [string cat $root $name "/" $version]
module load intel/2019.0
module load openssl.intel/1_1_1
module load python3/3.7.0
module load gcc/4.9.2
module load cuda/9.0
module load nlpl-numpy/1.16.0/3.7
module load nlpl-scipy/201901/3.7
prepend-path PYTHONPATH $base/lib/python3.7/site-packages
```

```
prepend-path LD_LIBRARY_PATH $base/lib
prepend-path LD_LIBRARY_PATH $base/lib
prepend-path PATH $base/bin/3.7
```



```
#%Module1.0
```

```
set root "/projects/nlpl/software/"
set name "pytorch"
set version "1.1.0"
set base [string cat $root $name "/" $version]
module load intel/2019.0
module load openssl.intel/1_1_1
module load python3/3.7.0
module load gcc/4.9.2
module load cuda/9.0
module load nlpl-numpy/1.16.0/3.7
module load nlpl-scipy/201901/3.7
prepend-path PYTHONPATH $base/lib/python3.7/site-packages
```

```
prepend-path LD_LIBRARY_PATH $base/lib
prepend-path PATH $base/bin/3.7
```


Throughput Limited Parallelization; Many Jobs to 'Turn Around';

Diversity Some Large-Memory Needs; Some I/O-Bound Jobs;

Throughput Limited Parallelization; Many Jobs to 'Turn Around';

Diversity Some Large-Memory Needs; Some I/O-Bound Jobs;

Hardware Acute GPU Shortage in Norway (and, for now, Finland);

Throughput Limited Parallelization; Many Jobs to 'Turn Around';
Diversity Some Large-Memory Needs; Some I/O-Bound Jobs;
Hardware Acute GPU Shortage in Norway (and, for now, Finland);
Few Privacy Concerns Predominantly Public, Non-Sensitive Data;

Throughput Limited Parallelization; Many Jobs to 'Turn Around'; **Diversity** Some Large-Memory Needs; Some I/O-Bound Jobs; **Hardware** Acute GPU Shortage in Norway (and, for now, Finland); **Few Privacy Concerns** Predominantly Public, Non-Sensitive Data; **User Communities** Discipline-Specific Installations & Support; **Self-Help** Large, common data sets; specialized, in-house software; **Internationalization** (At Least Nordic) Cross-Border Perspective.

Throughput Limited Parallelization; Many Jobs to 'Turn Around'; **Diversity** Some Large-Memory Needs; Some I/O-Bound Jobs; Acute GPU Shortage in Norway (and, for now, Finland); Hardware **Few Privacy Concerns** Predominantly Public, Non-Sensitive Data; **User Communities** Discipline-Specific Installations & Support; **Self-Help** Large, common data sets; specialized, in-house software; **Internationalization** (At Least Nordic) Cross-Border Perspective.

Challenges After Two Years of NLPL

- ► For now, virtual laboratories on Abel and Taito expensive to migrate;
- want automated instantiation (across platforms) of NLPL 'blueprint'.

Community Formation: Annual Winter School

Community Formation: Annual Winter School

CSC (Finland) and Uninett Sigma2 (Norway);

CSC (Finland) and Uninett Sigma2 (Norway);

The Project Partners and NLPL Team;

CSC (Finland) and Uninett Sigma2 (Norway);

The Project Partners and NLPL Team;

The Nordic and European Tax Payers;

CSC (Finland) and Uninett Sigma2 (Norway);

The Project Partners and NLPL Team;

The Nordic and European Tax Payers;

Bjørn Lindi, our Project Manager.